Helm Chart Testing in Production: Layers, Tools, and a Minimum CI Pipeline

Helm Chart Testing in Production: Layers, Tools, and a Minimum CI Pipeline

When a Helm chart fails in production, the impact is immediate and visible. A misconfigured ServiceAccount, a typo in a ConfigMap key, or an untested conditional in templates can trigger incidents that cascade through your entire deployment pipeline. The irony is that most teams invest heavily in testing application code while treating Helm charts as “just configuration.”

Chart testing is fundamental for production-quality Helm deployments. For comprehensive coverage of testing along with all other Helm best practices, visit our complete Helm guide.

Helm charts are infrastructure code. They define how your applications run, scale, and integrate with the cluster. Treating them with less rigor than your application logic is a risk most production environments cannot afford.

The Real Cost of Untested Charts

In late 2024, a medium-sized SaaS company experienced a 4-hour outage because a chart update introduced a breaking change in RBAC permissions. The chart had been tested locally with helm install --dry-run, but the dry-run validation doesn’t interact with the API server’s RBAC layer. The deployment succeeded syntactically but failed operationally.

The incident revealed three gaps in their workflow:

  1. No schema validation against the target Kubernetes version
  2. No integration tests in a live cluster
  3. No policy enforcement for security baselines

These gaps are common. According to a 2024 CNCF survey on GitOps practices, fewer than 40% of organizations systematically test Helm charts before production deployment.

The problem is not a lack of tools—it’s understanding which layer each tool addresses.

Testing Layers: What Each Level Validates

Helm chart testing is not a single operation. It requires validation at multiple layers, each catching different classes of errors.

Layer 1: Syntax and Structure Validation

What it catches: Malformed YAML, invalid chart structure, missing required fields

Tools:

  • helm lint: Built-in, minimal validation following Helm best practices
  • yamllint: Strict YAML formatting rules

Example failure caught:

# Invalid indentation breaks the chart
resources:
  limits:
      cpu: "500m"
    memory: "512Mi"  # Incorrect indentation

Limitation: Does not validate whether the rendered manifests are valid Kubernetes objects.

Layer 2: Schema Validation

What it catches: Manifests that would be rejected by the Kubernetes API

Primary tool: kubeconform

Kubeconform is the actively maintained successor to the deprecated kubeval. It validates against OpenAPI schemas for specific Kubernetes versions and can include custom CRDs.

Project Profile:

  • Maintenance: Active, community-driven
  • Strengths: CRD support, multi-version validation, fast execution
  • Why it matters: helm lint validates chart structure, but not if rendered manifests match Kubernetes schemas

Example failure caught:

apiVersion: apps/v1
kind: Deployment
spec:
  replicas: 2
  template:
    metadata:
      labels:
        app: myapp
    spec:
      containers:
      - name: app
        image: nginx:latest
# Missing required field: spec.selector

Configuration example:

helm template my-chart . | kubeconform \
  -kubernetes-version 1.30.0 \
  -schema-location default \
  -schema-location 'https://raw.githubusercontent.com/datreeio/CRDs-catalog/main/{{.Group}}/{{.ResourceKind}}_{{.ResourceAPIVersion}}.json' \
  -summary

Example CI integration:

#!/bin/bash
set -e

KUBE_VERSION="1.30.0"

echo "Rendering chart..."
helm template my-release ./charts/my-chart > manifests.yaml

echo "Validating against Kubernetes $KUBE_VERSION..."
kubeconform \
  -kubernetes-version "$KUBE_VERSION" \
  -schema-location default \
  -summary \
  -output json \
  manifests.yaml | jq -e '.summary.invalid == 0'

Alternative: kubectl --dry-run=server (requires cluster access, validates against actual API server)

Layer 3: Unit Testing

What it catches: Logic errors in templates, incorrect conditionals, wrong value interpolation

Unit tests validate that given a set of input values, the chart produces the expected manifests. This is where template logic is verified before reaching a cluster.

Primary tool: helm-unittest

helm-unittest is the most widely adopted unit testing framework for Helm charts.

Project Profile:

  • GitHub: 3.3k+ stars, ~100 contributors
  • Maintenance: Active (releases every 2-3 months)
  • Primary maintainer: Quentin Machu (originally @QubitProducts, now independent)
  • Commercial backing: None
  • Bus Factor: Medium-High (no institutional backing, but consistent community engagement)

Strengths:

  • Fast execution (no cluster required)
  • Familiar test syntax (similar to Jest/Mocha)
  • Snapshot testing support
  • Good documentation

Limitations:

  • Doesn’t validate runtime behavior
  • Cannot test interactions with admission controllers
  • No validation against actual Kubernetes API

Example test scenario:

# tests/deployment_test.yaml
suite: test deployment
templates:
  - deployment.yaml
tests:
  - it: should set resource limits when provided
    set:
      resources.limits.cpu: "1000m"
      resources.limits.memory: "1Gi"
    asserts:
      - equal:
          path: spec.template.spec.containers[0].resources.limits.cpu
          value: "1000m"
      - equal:
          path: spec.template.spec.containers[0].resources.limits.memory
          value: "1Gi"

  - it: should not create HPA when autoscaling disabled
    set:
      autoscaling.enabled: false
    template: hpa.yaml
    asserts:
      - hasDocuments:
          count: 0

Alternative: Terratest (Helm module)

Terratest is a Go-based testing framework from Gruntwork that includes first-class Helm support. Unlike helm-unittest, Terratest deploys charts to real clusters and allows programmatic assertions in Go.

Example Terratest test:

func TestHelmChartDeployment(t *testing.T) {
    kubectlOptions := k8s.NewKubectlOptions("", "", "default")
    options := &helm.Options{
        KubectlOptions: kubectlOptions,
        SetValues: map[string]string{
            "replicaCount": "3",
        },
    }
    
    defer helm.Delete(t, options, "my-release", true)
    helm.Install(t, options, "../charts/my-chart", "my-release")
    
    k8s.WaitUntilNumPodsCreated(t, kubectlOptions, metav1.ListOptions{
        LabelSelector: "app=my-app",
    }, 3, 30, 10*time.Second)
}

When to use Terratest vs helm-unittest:

  • Use helm-unittest for fast, template-focused validation in CI
  • Use Terratest when you need full integration testing with Go flexibility

Layer 4: Integration Testing

What it catches: Runtime failures, resource conflicts, actual Kubernetes behavior

Integration tests deploy the chart to a real (or ephemeral) cluster and verify it works end-to-end.

Primary tool: chart-testing (ct)

chart-testing is the official Helm project for testing charts in live clusters.

Project Profile:

  • Ownership: Official Helm project (CNCF)
  • Maintainers: Helm team (contributors from Microsoft, IBM, Google)
  • Governance: CNCF-backed with public roadmap
  • LTS: Aligned with Helm release cycle
  • Bus Factor: Low (institutional backing from CNCF provides strong long-term guarantees)

Strengths:

  • De facto standard for public Helm charts
  • Built-in upgrade testing (validates migrations)
  • Detects which charts changed in a PR (efficient for monorepos)
  • Integration with GitHub Actions via official action

Limitations:

  • Requires a live Kubernetes cluster
  • Initial setup more complex than unit testing
  • Does not include security scanning

What ct validates:

  • Chart installs successfully
  • Upgrades work without breaking state
  • Linting passes
  • Version constraints are respected

Example ct configuration:

# ct.yaml
target-branch: main
chart-dirs:
  - charts
chart-repos:
  - bitnami=https://charts.bitnami.com/bitnami
helm-extra-args: --timeout 600s
check-version-increment: true

Typical GitHub Actions workflow:

name: Lint and Test Charts

on: pull_request

jobs:
  lint-test:
    runs-on: ubuntu-latest
    steps:
      - name: Checkout
        uses: actions/checkout@v3
        with:
          fetch-depth: 0

      - name: Set up Helm
        uses: azure/setup-helm@v3

      - name: Set up Python
        uses: actions/setup-python@v4
        with:
          python-version: '3.11'

      - name: Set up chart-testing
        uses: helm/chart-testing-action@v2

      - name: Run chart-testing (lint)
        run: ct lint --config ct.yaml

      - name: Create kind cluster
        uses: helm/kind-action@v1

      - name: Run chart-testing (install)
        run: ct install --config ct.yaml

When ct is essential:

  • Public chart repositories (expected by community)
  • Charts with complex upgrade paths
  • Multi-chart repositories with CI optimization needs

Layer 5: Security and Policy Validation

What it catches: Security misconfigurations, policy violations, compliance issues

This layer prevents deploying charts that pass functional tests but violate organizational security baselines or contain vulnerabilities.

Policy Enforcement: Conftest (Open Policy Agent)

Conftest is the CLI interface to Open Policy Agent for policy-as-code validation.

Project Profile:

  • Parent: Open Policy Agent (CNCF Graduated Project)
  • Governance: Strong CNCF backing, multi-vendor support
  • Production adoption: Netflix, Pinterest, Goldman Sachs
  • Bus Factor: Low (graduated CNCF project with multi-vendor backing)

Strengths:

  • Policies written in Rego (reusable, composable)
  • Works with any YAML/JSON input (not Helm-specific)
  • Can enforce organizational standards programmatically
  • Integration with admission controllers (Gatekeeper)

Limitations:

  • Rego has a learning curve
  • Does not replace functional testing

Example Conftest policy:

# policy/security.rego
package main

import future.keywords.contains
import future.keywords.if
import future.keywords.in

deny[msg] {
  input.kind == "Deployment"
  container := input.spec.template.spec.containers[_]
  not container.resources.limits.memory
  msg := sprintf("Container '%s' must define memory limits", [container.name])
}

deny[msg] {
  input.kind == "Deployment"
  container := input.spec.template.spec.containers[_]
  not container.resources.limits.cpu
  msg := sprintf("Container '%s' must define CPU limits", [container.name])
}

Running the validation:

helm template my-chart . | conftest test -p policy/ -

Alternative: Kyverno

Kyverno offers policy enforcement using native Kubernetes manifests instead of Rego. Policies are written in YAML and can validate, mutate, or generate resources.

Example Kyverno policy:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: require-resource-limits
spec:
  validationFailureAction: Enforce
  rules:
  - name: check-container-limits
    match:
      resources:
        kinds:
        - Pod
    validate:
      message: "All containers must have CPU and memory limits"
      pattern:
        spec:
          containers:
          - resources:
              limits:
                memory: "?*"
                cpu: "?*"

Conftest vs Kyverno:

  • Conftest: Policies run in CI, flexible for any YAML
  • Kyverno: Runtime enforcement in-cluster, Kubernetes-native

Both can coexist: Conftest in CI for early feedback, Kyverno in cluster for runtime enforcement.

Vulnerability Scanning: Trivy

Trivy by Aqua Security provides comprehensive security scanning for Helm charts.

Project Profile:

  • Maintainer: Aqua Security (commercial backing with open-source core)
  • Scope: Vulnerability scanning + misconfiguration detection
  • Helm integration: Official trivy helm command
  • Bus Factor: Low (commercial backing + strong open-source adoption)

What Trivy scans in Helm charts:

  1. Vulnerabilities in referenced container images
  2. Misconfigurations (similar to Conftest but pre-built rules)
  3. Secrets accidentally committed in templates

Example scan:

trivy helm ./charts/my-chart --severity HIGH,CRITICAL --exit-code 1

Sample output:

myapp/templates/deployment.yaml (helm)
====================================

Tests: 12 (SUCCESSES: 10, FAILURES: 2)
Failures: 2 (HIGH: 1, CRITICAL: 1)

HIGH: Container 'app' of Deployment 'myapp' should set 'securityContext.runAsNonRoot' to true
════════════════════════════════════════════════════════════════════════════════════════════════
Ensure containers run as non-root users

See https://kubernetes.io/docs/concepts/security/pod-security-standards/
────────────────────────────────────────────────────────────────────────────────────────────────
 myapp/templates/deployment.yaml:42

Commercial support:
Aqua Security offers Trivy Enterprise with advanced features (centralized scanning, compliance reporting). For most teams, the open-source version is sufficient.

Other Security Tools

Polaris (Fairwinds)

Polaris scores charts based on security and reliability best practices. Unlike enforcement tools, it provides a health score and actionable recommendations.

Use case: Dashboard for chart quality across a platform

Checkov (Bridgecrew/Palo Alto)

Similar to Trivy but with a broader IaC focus (Terraform, CloudFormation, Kubernetes, Helm). Pre-built policies for compliance frameworks (CIS, PCI-DSS).

When to use Checkov:

  • Multi-IaC environment (not just Helm)
  • Compliance-driven validation requirements

Enterprise Selection Criteria

Bus Factor and Long-Term Viability

For production infrastructure, tool sustainability matters as much as features. Community support channels like Helm CNCF Slack (#helm-users, #helm-dev) and CNCF TAG Security provide valuable insights into which projects have active maintainer communities.

Questions to ask:

  • Is the project backed by a foundation (CNCF, Linux Foundation)?
  • Are multiple companies contributing?
  • Is the project used in production by recognizable organizations?
  • Is there a public roadmap?

Risk Classification:

Tool Governance Bus Factor Notes
chart-testing CNCF Low Helm official project
Conftest/OPA CNCF Graduated Low Multi-vendor backing
Trivy Aqua Security Low Commercial backing + OSS
kubeconform Community Medium Active, but single maintainer
helm-unittest Community Medium-High No institutional backing
Polaris Fairwinds Medium Company-sponsored OSS

Kubernetes Version Compatibility

Tools must explicitly support the Kubernetes versions you run in production.

Red flags:

  • No documented compatibility matrix
  • Hard-coded dependencies on old K8s versions
  • No testing against multiple K8s versions in CI

Example compatibility check:

# Does the tool support your K8s version?
kubeconform --help | grep -A5 "kubernetes-version"

For tools like ct, always verify they test against a matrix of Kubernetes versions in their own CI.

Commercial Support Options

When commercial support matters:

  • Regulatory compliance requirements (SOC2, HIPAA, etc.)
  • Limited internal expertise
  • SLA-driven operations

Available options:

  • Trivy: Aqua Security offers Trivy Enterprise
  • OPA/Conftest: Styra provides OPA Enterprise
  • Terratest: Gruntwork offers consulting and premium modules

Most teams don’t need commercial support for chart testing specifically, but it’s valuable in regulated industries where audits require vendor SLAs.

Security Scanner Integration

For enterprise pipelines, chart testing tools should integrate cleanly with:

  • SIEM/SOAR platforms
  • CI/CD notification systems
  • Security dashboards (e.g., Grafana, Datadog)

Required features:

  • Structured output formats (JSON, SARIF)
  • Exit codes for CI failure
  • Support for custom policies
  • Webhook or API for event streaming

Example: Integrating Trivy with SIEM

# .github/workflows/security.yaml
- name: Run Trivy scan
  run: trivy helm ./charts --format json --output trivy-results.json

- name: Send to SIEM
  run: |
    curl -X POST https://siem.company.com/api/events \
      -H "Content-Type: application/json" \
      -d @trivy-results.json

Testing Pipeline Architecture

A production-grade Helm chart pipeline combines multiple layers:

Pipeline efficiency principles:

  1. Fail fast: syntax and schema errors should never reach integration tests
  2. Parallel execution where possible (unit tests + security scans)
  3. Cache ephemeral cluster images to reduce setup time
  4. Skip unchanged charts (ct built-in change detection)

Decision Matrix: When to Use What

Scenario 1: Small Team / Early-Stage Startup

Requirements: Minimal overhead, fast iteration, reasonable safety

Recommended Stack:

Linting:      helm lint + yamllint
Validation:   kubeconform
Security:     trivy helm

Optional: helm-unittest (if template logic becomes complex)

Rationale: Zero-dependency baseline that catches 80% of issues without operational complexity.

Scenario 2: Enterprise with Compliance Requirements

Requirements: Auditable, comprehensive validation, commercial support available

Recommended Stack:

Linting:      helm lint + yamllint
Validation:   kubeconform
Unit Tests:   helm-unittest
Security:     Trivy Enterprise + Conftest (custom policies)
Integration:  chart-testing (ct)
Runtime:      Kyverno (admission control)

Optional: Terratest for complex upgrade scenarios

Rationale: Multi-layer defense with both pre-deployment and runtime enforcement. Commercial support available for security components.

Scenario 3: Multi-Tenant Internal Platform

Requirements: Prevent bad charts from affecting other tenants, enforce standards at scale

Recommended Stack:

CI Pipeline:
  • helm lint → kubeconform → helm-unittest → ct
  • Conftest (enforce resource quotas, namespaces, network policies)
  • Trivy (block critical vulnerabilities)

Runtime:
  • Kyverno or Gatekeeper (enforce policies at admission)
  • ResourceQuotas per namespace
  • NetworkPolicies by default

Additional tooling:

  • Polaris dashboard for chart quality scoring
  • Custom admission webhooks for platform-specific rules

Rationale: Multi-tenant environments cannot tolerate “soft” validation. Runtime enforcement is mandatory.

Scenario 4: Open Source Public Charts

Requirements: Community trust, transparent testing, broad compatibility

Recommended Stack:

Must-have:
  • chart-testing (expected standard)
  • Public CI (GitHub Actions with full logs)
  • Test against multiple K8s versions

Nice-to-have:
  • helm-unittest with high coverage
  • Automated changelog generation
  • Example values for common scenarios

Rationale: Public charts are judged by testing transparency. Missing ct is a red flag for potential users.

The Minimum Viable Testing Stack

For any environment deploying Helm charts to production, this is the baseline:

Layer 1: Pre-Commit (Developer Laptop)

helm lint charts/my-chart
yamllint charts/my-chart

Layer 2: CI Pipeline (Automated on PR)

# Fast validation
helm template my-chart ./charts/my-chart | kubeconform \
  -kubernetes-version 1.30.0 \
  -summary

# Security baseline
trivy helm ./charts/my-chart --exit-code 1 --severity CRITICAL,HIGH

Layer 3: Pre-Production (Staging Environment)

# Integration test with real cluster
ct install --config ct.yaml --charts charts/my-chart

Time investment:

  • Initial setup: 4-8 hours
  • Per-PR overhead: 3-5 minutes
  • Maintenance: ~1 hour/month

ROI calculation:

Average production incident caused by untested chart:

  • Detection: 15 minutes
  • Triage: 30 minutes
  • Rollback: 20 minutes
  • Post-mortem: 1 hour
  • Total: ~2.5 hours of engineering time

If chart testing prevents even one incident per quarter, it pays for itself in the first month.

Common Anti-Patterns to Avoid

Anti-Pattern 1: Only using --dry-run

helm install --dry-run validates syntax but skips:

  • Admission controller logic
  • RBAC validation
  • Actual resource creation

Better: Combine dry-run with kubeconform and at least one integration test.

Anti-Pattern 2: Testing only in production-like clusters

“We test in staging, which is identical to production.”

Problem: Staging clusters rarely match production exactly (node counts, storage classes, network policies). Integration tests should run in isolated, ephemeral environments.

Anti-Pattern 3: Security scanning without enforcement

Running trivy helm without failing the build on critical findings is theater.

Better: Set --exit-code 1 and enforce in CI.

Anti-Pattern 4: Ignoring upgrade paths

Most chart failures happen during upgrades, not initial installs. Chart-testing addresses this with ct install --upgrade.

Conclusion: Testing is Infrastructure Maturity

The gap between teams that test Helm charts and those that don’t is not about tooling availability—it’s about treating infrastructure code with the same discipline as application code.

The cost of testing is measured in minutes per PR. The cost of not testing is measured in hours of production incidents, eroded trust in automation, and teams reverting to manual deployments because “Helm is too risky.”

The testing stack you choose matters less than the fact that you have one. Start with the minimal viable stack (lint + schema + security), run it consistently, and expand as your charts become more complex.

By implementing a structured testing pipeline, you catch 95% of chart issues before they reach production. The remaining 5% are edge cases that require production observability, not more testing layers.

Helm chart testing is not about achieving perfection—it’s about eliminating the preventable failures that undermine confidence in your deployment pipeline.

MinIO Maintenance Mode Explained: Impact on Community Users, OEMs, and S3 Alternatives

MinIO Maintenance Mode Explained: Impact on Community Users, OEMs, and S3 Alternatives

Background: MinIO and the Maintenance Mode announcement

MinIO has long been one of the most popular self-hosted S3-compatible object storage solutions, especially in Kubernetes and on‑premise environments. Its simplicity, performance, and API compatibility made it a common default choice for backups, artifacts, logs, and internal object storage.

In late 2025, MinIO marked its upstream repository as Maintenance Mode and clarified that the Community Edition would be distributed source-only, without official pre-built binaries or container images. This move triggered renewed discussion across the industry about sustainability, governance, and the risks of relying on a single-vendor-controlled “open core” storage layer.

A detailed industry analysis of this shift, including its broader ecosystem impact, can be found in this InfoQ article

What exactly changed?

1. Maintenance Mode

Maintenance Mode means:

  • No new features
  • No roadmap-driven improvements
  • Limited fixes, typically only for critical issues
  • No active review of community pull requests

As highlighted by InfoQ, this effectively freezes MinIO Community as a stable but stagnant codebase, pushing innovation and evolution exclusively toward the commercial offerings.

2. Source-only distribution

Official binaries and container images are no longer published for the Community Edition. Users must:

  • Build MinIO from source
  • Maintain their own container images
  • Handle signing, scanning, and provenance themselves

This aligns with a broader industry pattern noted by InfoQ: infrastructure projects increasingly shifting operational burden back to users unless they adopt paid tiers.

Direct implications for Community users

Security and patching

With no active upstream development:

  • Vulnerability response times may increase
  • Users must monitor security advisories independently
  • Regulated environments may find Community harder to justify

InfoQ emphasizes that this does not make MinIO insecure by default, but it changes the shared-responsibility model significantly.

Operational overhead

Teams now need to:

  • Pin commits or tags explicitly
  • Build and test their own releases
  • Maintain CI pipelines for a core storage dependency

This is a non-trivial cost for what was previously perceived as a “drop‑in” component.

Support and roadmap

The strategic message is clear: active development, roadmap influence, and predictable maintenance live behind the commercial subscription.

Impact on OEM and embedded use cases

The InfoQ analysis draws an important distinction between API consumers and technology embedders.

Using MinIO as an external S3 service

If your application simply consumes an S3 endpoint:

  • The impact is moderate
  • Migration is largely operational
  • Application code usually remains unchanged

Embedding or redistributing MinIO

If your product:

  • Ships MinIO internally
  • Builds gateways or features on MinIO internals
  • Depends on MinIO-specific operational tooling

Then the impact is high:

  • You inherit maintenance and security responsibility
  • Long-term internal forking becomes likely
  • Licensing (AGPL) implications must be reassessed carefully

For OEM vendors, this often forces a strategic re-evaluation rather than a tactical upgrade.

Forks and community reactions

At the time of writing:

  • Several community forks focus on preserving the MinIO Console / UI experience
  • No widely adopted, full replacement fork of the MinIO server exists
  • Community discussion, as summarized by InfoQ, reflects caution rather than rapid consolidation

The absence of a strong server-side fork suggests that most organizations are choosing migration over replacement-by-fork.

Fully open-source alternatives to MinIO

InfoQ highlights that the industry response is not about finding a single “new MinIO”, but about selecting storage systems whose governance and maintenance models better match long-term needs.

Ceph RGW

Best for: Enterprise-grade, highly available environments
Strengths: Mature ecosystem, large community, strong governance
Trade-offs: Operational complexity

SeaweedFS

Best for: Teams seeking simplicity and permissive licensing
Strengths: Apache-2.0 license, active development, integrated S3 API
Trade-offs: Partial S3 compatibility for advanced edge cases

Garage

Best for: Self-hosted and geo-distributed systems
Strengths: Resilience-first design, active open-source development
Trade-offs: AGPL license considerations

Zenko / CloudServer

Best for: Multi-cloud and Scality-aligned architectures
Strengths: Open-source S3 API implementation
Trade-offs: Different architectural assumptions than MinIO

Recommended strategies by scenario

If you need to reduce risk immediately

  • Freeze your current MinIO version
  • Build, scan, and sign your own images
  • Define and rehearse a migration path

If you operate Kubernetes on-prem with HA requirements

  • Ceph RGW is often the most future-proof option

If licensing flexibility is critical

  • Start evaluation with SeaweedFS

If operational UX matters

  • Shift toward automation-first workflows
  • Treat UI forks as secondary tooling, not core infrastructure

Conclusion

MinIO’s shift of the Community Edition into Maintenance Mode is less about short-term breakage and more about long-term sustainability and control.

As the InfoQ analysis makes clear, the real risk is not technical incompatibility but governance misalignment. Organizations that treat object storage as critical infrastructure should favor solutions with transparent roadmaps, active communities, and predictable maintenance models.

For many teams, this moment serves as a natural inflection point: either commit to self-maintaining MinIO, move to a commercially supported path, or migrate to a fully open-source alternative designed for the long run.

📚 Want to dive deeper into Kubernetes? This article is part of our comprehensive Kubernetes Architecture Patterns guide, where you’ll find all fundamental and advanced concepts explained step by step.

Helm Drivers Explained: Secrets, ConfigMaps, and State Storage in Helm

Helm Drivers Explained: Secrets, ConfigMaps, and State Storage in Helm

When working seriously with Helm in production environments, one of the less-discussed but highly impactful topics is how Helm stores and manages release state. This is where Helm drivers come into play. Understanding Helm drivers is not just an academic exercise; it directly affects security, scalability, troubleshooting, and even disaster recovery strategies.

Understanding Helm drivers is critical for production deployments. This is just one of many essential topics covered in our comprehensive Helm package management guide.

What Helm Drivers Are and How They Are Configured

A Helm driver defines the backend storage mechanism Helm uses to persist release information such as manifests, values, and revision history. Every Helm release has state, and that state must live somewhere. The driver determines where and how this data is stored.

Helm drivers are configured using the HELM_DRIVER environment variable. If the variable is not explicitly set, Helm defaults to using Kubernetes Secrets.

export HELM_DRIVER=secrets

This simple configuration choice can have deep operational consequences, especially in regulated environments or large-scale clusters.

Available Helm Drivers

Secrets Driver (Default)

The secrets driver stores release information as Kubernetes Secrets in the target namespace. This has been the default driver since Helm 3 was introduced.

Secrets are base64-encoded and can be encrypted at rest if Kubernetes encryption at rest is enabled. This makes the driver suitable for clusters with moderate security requirements without additional configuration.

ConfigMaps Driver

The configmaps driver stores Helm release state as Kubernetes ConfigMaps. Functionally, it behaves very similarly to the secrets driver but without any form of implicit confidentiality.

export HELM_DRIVER=configmaps

This driver is often used in development or troubleshooting scenarios where human readability is preferred.

Memory Driver

The memory driver stores release information only in memory. Once the Helm process exits, all state is lost.

export HELM_DRIVER=memory

This driver is rarely used outside of testing, CI pipelines, or ephemeral validation workflows.

Evolution of Helm Drivers

Helm drivers were significantly reworked with the release of Helm 3 in late 2019. Helm 2 relied on Tiller and ConfigMaps by default, which introduced security and operational complexity. Helm 3 removed Tiller entirely and introduced pluggable storage backends with Secrets as the secure default.

Since then, improvements have focused on performance, stability, and better error handling rather than introducing new drivers. The core abstraction has remained intentionally small to avoid fragmentation.

Practical Use Cases and When to Use Each Driver

In production Kubernetes clusters, the secrets driver is almost always the right choice. It integrates naturally with RBAC, supports encryption at rest, and aligns with Kubernetes-native security models.

ConfigMaps can be useful when debugging failed upgrades or learning Helm internals, as the stored data is easier to inspect. However, it should be avoided in environments handling sensitive values.

The memory driver shines in CI/CD pipelines where chart validation or rendering is needed without polluting a cluster with state.

Practical Examples

Switching drivers dynamically can be useful when inspecting a release:

HELM_DRIVER=configmaps helm get manifest my-release

Or running a dry validation in CI:

HELM_DRIVER=memory helm upgrade --install test ./chart --dry-run

Final Thoughts

Helm drivers are rarely discussed, yet they influence how reliable, secure, and observable your Helm workflows are. Treating the choice of driver as a deliberate architectural decision rather than a default setting is one of those small details that differentiate mature DevOps practices from ad-hoc automation.

Helm 4.0 Explained: New Features, Breaking Changes, and Migration Best Practices

Helm 4.0 Explained: New Features, Breaking Changes, and Migration Best Practices

Helm is one of the main utilities within the Kubernetes ecosystem, and therefore the release of a new major version, such as Helm 4.0, is something to consider because it is undoubtedly something that will need to be analyzed, evaluated, and managed in the coming months.

Helm 4.0 represents a major milestone in Kubernetes package management. For a complete understanding of Helm from basics to advanced features, explore our definitive Helm guide.

Due to this, we will see many comments and articles around this topic, so we will try to shed some light.

Main New Features of Helm 4.0

According to the project itself in its announcement, Helm 4 introduces three major blocks of changes: new plugin system, better integration with Kubernetes ** and internal modernization of SDK and performance**.

New Plugin System (includes WebAssembly)

The plugin system has been completely redesigned, with a special focus on security through the introduction of a new WebAssembly runtime that, while optional, is recommended as it runs in a “sandbox” mode that offers limits and guarantees from a security perspective.

In any case, there is no need to worry excessively, as the “classic” plugins continue to work, but the message is clear: for security and extensibility, the direction is Wasm.

Server-Side Apply and Better Integration with Other Controllers

From this version, Helm 4 supports Server-Side Apply (SSA) through the --server-side flag, which has already become stable since Kubernetes version v1.22 and allows updates on objects to be handled server-side to avoid conflicts between different controllers managing the same resources.

It also incorporates integration with kstatus to ensure the state of a component in a more reliable way than what currently happens with the use of the --wait parameter.

Other Additional Improvements

Additionally, there is another list of improvements that, while of lesser scope, are important qualitative leaps, such as the following:

  • Installation by digest in OCI registries: (helm install myapp oci://...@sha256:<digest>)
  • Multi-document values: you can pass multiple YAML values in a single multi-doc file, facilitating complex environments/overlays.
  • New --set-json argument that allows for easily passing complex structures compared to the current solution using the --set parameter

Why a Major (v4) and Not Another Minor of 3.x?

As explained in the official release post, there were features that the team could not introduce in v3 without breaking public SDK APIs and internal architecture:

  • Strong change in the plugin system (WebAssembly, new types, deep integration with the core).
  • Restructuring of Go packages and establishment of a stable SDK at helm.sh/helm/v4, code-incompatible with v3.
  • Introduction and future evolution of Charts v3, which require the SDK to support multiple versions of chart APIs.

With all this, continuing in the 3.x branch would have violated SemVer: the major number change is basically “paying” the accumulated technical debt to be able to move forward.

Additionally, a new evolution of the charts is expected in the future, moving from v2 to a future v3 that is not yet fully defined, and currently, v2 charts run correctly in this new version.

Do I Have to Migrate to This New Version?

The short answer is: yes. And possibly the long answer is: yes, and quickly. In the official Helm 4 announcement, they specify the support schedule for Helm 3:

  • Helm 3 bug fixes until July 8, 2026.
  • Helm 3 security fixes until November 11, 2026.
  • No new features will be backported to Helm 3 during this period; only Kubernetes client libraries will be updated to support new K8s versions.

Practical translation:

  • You have ~1 year to plan a smooth migration to Helm 4 with bug support.
  • After November 2026, continuing to use Helm 3 will become increasingly risky from a security and compatibility standpoint.

Best Practices for Migration

To carry out the migration, it is important to remember that it is perfectly possible and feasible to have both versions installed on the same machine or agent, so a “gradual” migration can be done to ensure that the end of support for version v3 is reached with everything migrated correctly, and for that, the following steps are recommended:

  • Conduct an analysis of all Helm commands and usage from the perspective of integration pipelines, upgrade scripts, or even the import of Helm client libraries in Helm-based developments.
  • Especially carefully review all uses of --post-renderer, helm registry login, --atomic, --force.
  • After the analysis, start testing Helm 4 first in non-production environments, reusing the same charts and values, reverting to Helm 3 if a problem is detected until it is resolved.
  • If you have critical plugins, explicitly test them with Helm 4 before making the global change.

Resolving Kubernetes Ingress Issues: Limitations and Gateway Insights

Resolving Kubernetes Ingress Issues: Limitations and Gateway Insights

Introduction

Ingresses have been, since the early versions of Kubernetes, the most common way to expose applications to the outside. Although their initial design was simple and elegant, the success of Kubernetes and the growing complexity of use cases have turned Ingress into a problematic piece: limited, inconsistent between vendors, and difficult to govern in enterprise environments.

In this article, we analyze why Ingresses have become a constant source of friction, how different Ingress Controllers have influenced this situation, and why more and more organizations are considering alternatives like Gateway API.

What Ingresses are and why they were designed this way

The Ingress ecosystem revolves around two main resources:

🏷️ IngressClass

Defines which controller will manage the associated Ingresses. Its scope is cluster-wide, so it is usually managed by the platform team.

🌐 Ingress

It is the resource that developers use to expose a service. It allows defining routes, domains, TLS certificates, and little more.

Its specification is minimal by design, which allowed for rapid adoption, but also laid the foundation for current problems.

The problem: a standard too simple for complex needs

As Kubernetes became an enterprise standard, users wanted to replicate advanced configurations of traditional proxies: rewrites, timeouts, custom headers, CORS, etc.
But Ingress did not provide native support for all this.

Vendors reacted… and chaos was born.

Annotations vs CRDs: two incompatible paths

Different Ingress Controllers have taken very different paths to add advanced capabilities:

📝 Annotations (NGINX, HAProxy…)

Advantages:

  • Flexible and easy to use
  • Directly in the Ingress resource

Disadvantages:

  • Hundreds of proprietary annotations
  • Fragmented documentation
  • Non-portable configurations between vendors

📦 Custom CRDs (Traefik, Kong…)

Advantages:

  • More structured and powerful
  • Better validation and control

Disadvantages:

  • Adds new non-standard objects
  • Requires installation and management
  • Less interoperability

Result?
Infrastructures deeply coupled to a vendor, complicating migrations, audits, and automation.

The complexity for development teams

The design of Ingress implies two very different responsibilities:

  • Platform: defines IngressClass
  • Application: defines Ingress

But the reality is that the developer ends up making decisions that should be the responsibility of the platform area:

  • Certificates
  • Security policies
  • Rewrite rules
  • CORS
  • Timeouts
  • Corporate naming practices

This causes:

  • Inconsistent configurations
  • Bottlenecks in reviews
  • Constant dependency between teams
  • Lack of effective standardization

In large companies, where security and governance are critical, this is especially problematic.

NGINX Ingress: the decommissioning that reignited the debate

The recent decommissioning of the NGINX Ingress Controller has highlighted the fragility of the ecosystem:

  • Thousands of clusters depend on it
  • Multiple projects use its annotations
  • Migrating involves rewriting entire configurations

This has reignited the conversation about the need for a real standard… and there appears Gateway API.

Gateway API: a promising alternative (but not perfect)

Gateway API was born to solve many of the limitations of Ingress:

  • Clear separation of responsibilities (infrastructure vs application)
  • Standardized extensibility
  • More types of routes (HTTPRoute, TCPRoute…)
  • Greater expressiveness without relying on proprietary annotations

But it also brings challenges:

  • Requires gradual adoption
  • Not all vendors implement the same
  • Migration is not trivial

Even so, it is shaping up to be the future of traffic management in Kubernetes.

Conclusion

Ingresses have been fundamental to the success of Kubernetes, but their own simplicity has led them to become a bottleneck. The lack of interoperability, differences between vendors, and complex governance in enterprise environments make it clear that it is time to adopt more mature models.

Gateway API is not perfect, but it moves in the right direction.
Organizations that want future stability should start planning their transition.

📚 Want to dive deeper into Kubernetes? This article is part of our comprehensive Kubernetes Architecture Patterns guide, where you’ll find all fundamental and advanced concepts explained step by step.

Helm v3.17 Take Ownership Explained: Fix Release Ownership Conflicts

Helm v3.17 Take Ownership Explained: Fix Release Ownership Conflicts

Helm has long been the standard for managing Kubernetes applications using packaged charts, bringing a level of reproducibility and automation to the deployment process. However, some operational tasks, such as renaming a release or migrating objects between charts, have traditionally required cumbersome workarounds. With the introduction of the --take-ownership flag in Helm v3.17 (released in January 2025), a long-standing pain point is finally addressed—at least partially.

The take-ownership feature represents the continuing evolution of Helm. Learn about this and other cutting-edge capabilities in our Helm package management guide.

!– /wp:paragraph –>

In this post, we will explore:

  • What the --take-ownership flag does
  • Why it was needed
  • The caveats and limitations
  • Real-world use cases where it helps
  • When not to use it

Understanding Helm Object Ownership

When Helm installs or upgrades a chart, it injects metadata—labels and annotations—into every managed Kubernetes object. These include:

app.kubernetes.io/managed-by: Helm
meta.helm.sh/release-name: my-release
meta.helm.sh/release-namespace: default

This metadata serves an important role: Helm uses it to track and manage resources associated with each release. As a safeguard, Helm does not allow another release to modify objects it does not own and when you trying that you will see messages like the one below:

Error: Unable to continue with install: Service "provisioner-agent" in namespace "test-my-ns" exists and cannot be imported into the current release: invalid ownership metadata; annotation validation error: key "meta.helm.sh/release-name" must equal "dp-core-infrastructure11": current value is "dp-core-infrastructure"

While this protects users from accidental overwrites, it creates limitations for advanced use cases.

Why --take-ownership Was Needed

Let’s say you want to:

  • Rename an existing Helm release from api-v1 to api.
  • Move a ConfigMap or Service from one chart to another.
  • Rebuild state during GitOps reconciliation when previous Helm metadata has drifted.

Previously, your only option was to:

  1. Uninstall the existing release.
  2. Reinstall under the new name.

This approach introduces downtime, and in production systems, that’s often not acceptable.

What the Flag Does

helm upgrade my-release ./my-chart --take-ownership

When this flag is passed, Helm will:

  • Skip the ownership validation for existing objects.
  • Override the labels and annotations to associate the object with the current release.

In practice, this allows you to claim ownership of resources that previously belonged to another release, enabling seamless handovers.

⚠️ What It Doesn’t Do

This flag does not:

  • Clean up references from the previous release.
  • Protect you from future uninstalls of the original release (which might still remove shared resources).
  • Allow you to adopt completely unmanaged Kubernetes resources (those not initially created by Helm).

In short, it’s a mechanism for bypassing Helm’s ownership checks, not a full lifecycle manager.

Real-World Use Cases

Let’s go through common scenarios where this feature is useful.

✅ 1. Renaming a Release Without Downtime

Before:

helm uninstall old-name
helm install new-name ./chart

Now:

helm upgrade new-name ./chart --take-ownership

✅ 2. Migrating Objects Between Charts

You’re refactoring a large chart into smaller, modular ones and need to reassign certain Service or Secret objects.

This flag allows the new release to take control of the object without deleting or recreating it.

✅ 3. GitOps Drift Reconciliation

If objects were deployed out-of-band or their metadata changed unintentionally, GitOps tooling using Helm can recover without manual intervention using --take-ownership.

Best Practices and Recommendations

  • Use this flag intentionally, and document where it’s applied.
  • If possible, remove the previous release after migration to avoid confusion.
  • Monitor Helm’s behavior closely when managing shared objects.
  • For non-Helm-managed resources, continue to use kubectl annotate or kubectl label to manually align metadata.

Conclusion

The --take-ownership flag is a welcomed addition to Helm’s CLI arsenal. While not a universal solution, it smooths over many of the rough edges developers and SREs face during release evolution and GitOps adoption.

It brings a subtle but powerful improvement—especially in complex environments where resource ownership isn’t static.

Stay updated with Helm releases, and consider this flag your new ally in advanced release engineering.

ConfigMap Optional Values in Kubernetes: Avoid CreateContainerConfigError

ConfigMap Optional Values in Kubernetes: Avoid CreateContainerConfigError

Kubernetes ConfigMaps are a powerful tool for managing configuration data separately from application code. However, they can sometimes lead to issues during deployment, particularly when a ConfigMap referenced in a Pod specification is missing, causing the application to fail to start. This is a common scenario that can lead to a CreateContainerConfigError and halt your deployment pipeline.

Understanding the Problem

When a ConfigMap is referenced in a Pod’s specification, Kubernetes expects the ConfigMap to be present. If it is not, Kubernetes will not start the Pod, leading to a failed deployment. This can be problematic in situations where certain configuration data is optional or environment-specific, such as proxy settings that are only necessary in certain environments.

Making ConfigMap Values Optional

Kubernetes provides a way to define ConfigMap items as optional, allowing your application to start even if the ConfigMap is not present. This can be particularly useful for environment variables that only need to be set under certain conditions.

Here’s a basic example of how to make a ConfigMap optional:

apiVersion: v1
kind: Pod
metadata:
  name: example-pod
spec:
  containers:
  - name: example-container
    image: nginx
    env:
    - name: OPTIONAL_ENV_VAR
      valueFrom:
        configMapKeyRef:
          name: example-configmap
          key: optional-key
          optional: true

In this example:

  • name: example-configmap refers to the ConfigMap that might or might not be present.
  • optional: true ensures that the Pod will still start even if example-configmap or the optional-key within it is missing.

Practical Use Case: Proxy Configuration

A common use case for optional ConfigMap values is setting environment variables for proxy configuration. In many enterprise environments, proxy settings are only required in certain deployment environments (e.g., staging, production) but not in others (e.g., local development).

apiVersion: v1
kind: ConfigMap
metadata:
  name: proxy-config
data:
  HTTP_PROXY: "http://proxy.example.com"
  HTTPS_PROXY: "https://proxy.example.com"

In your Pod specification, you could reference these proxy settings as optional:

apiVersion: v1
kind: Pod
metadata:
  name: app-pod
spec:
  containers:
  - name: app-container
    image: my-app-image
    env:
    - name: HTTP_PROXY
      valueFrom:
        configMapKeyRef:
          name: proxy-config
          key: HTTP_PROXY
          optional: true
    - name: HTTPS_PROXY
      valueFrom:
        configMapKeyRef:
          name: proxy-config
          key: HTTPS_PROXY
          optional: true

In this setup, if the proxy-config ConfigMap is missing, the application will still start, simply without the proxy settings.

Sample Application

Let’s walk through a simple example to demonstrate this concept. We will create a deployment for an application that uses optional configuration values.

  1. Create the ConfigMap (Optional):
apiVersion: v1
kind: ConfigMap
metadata:
  name: app-config
data:
  GREETING: "Hello, World!"
  1. Deploy the Application:
apiVersion: apps/v1
kind: Deployment
metadata:
  name: hello-world-deployment
spec:
  replicas: 1
  selector:
    matchLabels:
      app: hello-world
  template:
    metadata:
      labels:
        app: hello-world
    spec:
      containers:
      - name: hello-world
        image: busybox
        command: ["sh", "-c", "echo $GREETING"]
        env:
        - name: GREETING
          valueFrom:
            configMapKeyRef:
              name: app-config
              key: GREETING
              optional: true
  1. Deploy and Test:
  2. Deploy the application using kubectl apply -f <your-deployment-file>.yaml.
  3. If the app-config ConfigMap is present, the Pod will output “Hello, World!”.
  4. If the ConfigMap is missing, the Pod will start, but no greeting will be echoed.

Conclusion

Optional ConfigMap values are a simple yet effective way to make your Kubernetes deployments more resilient and adaptable to different environments. By marking ConfigMap keys as optional, you can prevent deployment failures and allow your applications to handle missing configuration gracefully.

📚 Want to dive deeper into Kubernetes? This article is part of our comprehensive Kubernetes Architecture Patterns guide, where you’ll find all fundamental and advanced concepts explained step by step.

KubeSec Explained: How to Scan and Improve Kubernetes Security with YAML Analysis

KubeSec Explained: How to Scan and Improve Kubernetes Security with YAML Analysis

KubeSec is another tool to help improve the security of our Kubernetes cluster. And we’re seeing so many agencies focus on security to highlight this topic’s importance in modern architectures and deployments. Security is a key component now, probably the most crucial. We need all to step up our game on that topic, and that’s why it is essential to have tools in our toolset to help us on that task without being fully security experts on each of the technologies, such as Kubernetes in this case.

KubeSec is an open-source tool developed by a cloud-native and open-source security consultancy named ControlPlane that helps us perform a security risk analysis on Kubernetes resources.

How Does KubeSec Work?

KubeSec works based on the Kubernetes Manifest Files you use to deploy the different resources, so you need to provide the YAML file to one of the running ways this tool supports. This is an important topic, “one of the running ways,” because KubeSec supports many different running modes that help us cover other use cases.

You can run KubeSec in the following ones:

  • HTTP Mode: KubeSec will be listening to HTTP requests with the content of the YAML and provide a report based on that. This is useful in cases needing server mode execution, such as CICD pipelines, or just security servers to be used by some teams, such as DevOps or Platform Engineering. Also, another critical use-case of this mode is to be part of a Kubernetes Admission Controller on your Kubernetes Cluster so that you can enforce this when developers are deploying resources into the platform itself.
  • SaaS Mode: Similar to HTTP mode but without needing to host it yourself, all available behind kubesec.io kubesec.io when the SaaS mode is of your preference, and you’re not managing sensitive information on those components.
  • CLI Mode: Just to run it yourself as part of your local tests, you will have available another CLI command here: kubesec scan k8s-deployment.yaml
  • Docker Mode: Similar to CLI mode but as part of a docker image, it can also be compatible with the CICD pipelines based on containerized workloads.

KubeScan Output Report

What you will get out of the execution if KubeScan of any of its forms is a JSON report that you can use to improve and score the security level of your Kubernetes resources and some ways to improve it. The reason behind using JSON as the output also simplifies the tool’s usage in automated workloads such as CICD pipelines. Here you can see a sample of the output report you will get:

kubesec sample output

The important thing about the output is the kind of information you will receive from it. As you can see in the picture above, it is separated into two different sections per object. The first one is the “score,” that are the implemented things related to security that provide some score for the security of the object. But also you will have an advice section that provides some things and configurations you can do to improve that score, and because of that, also the global security of the Kubernetes object itself.

Kubescan also leverages another tool we have commented not far enough on this site, Kubeconform, so you can also specify the target Kubernetes version you’re hitting to have a much more precise report of your specific Kubernetes Manifest. To do that, you can specify the argument --kubernetes-version when you’re launching the command, as you can see in the picture below:

kubesec command with kubernetes-version option

 How To Install KubeScan?

Installation also provides different ways and flavors to see what is best for you. Here are some of the options available at the moment for writing this article:

Conclusion

Emphasizing the paramount importance of security in today’s intricate architectures, KubeSec emerges as a vital asset for bolstering the protection of Kubernetes clusters. Developed by ControlPlane, this open-source tool facilitates comprehensive security risk assessments of Kubernetes resources. Offering versatility through multiple operational modes—such as HTTP, SaaS, CLI, and Docker—KubeSec provides tailored support for diverse scenarios. Its JSON-based output streamlines integration into automated workflows, while its synergy with Kubeconform ensures precise analysis of Kubernetes Manifests. KubeSec’s user-friendly approach empowers security experts and novices, catalyzing an elevated standard of Kubernetes security across the board.

📚 Want to dive deeper into Kubernetes? This article is part of our comprehensive Kubernetes Architecture Patterns guide, where you’ll find all fundamental and advanced concepts explained step by step.

ReadOnlyRootFilesystem for TIBCO BWCE: Securing Containers with Kubernetes Best Practices

ReadOnlyRootFilesystem for TIBCO BWCE: Securing Containers with Kubernetes Best Practices

This article will cover how to enhance the security of your TIBCO BWCE images by creating a ReadOnlyFileSystem Image for TIBCO BWCE. In previous articles, we have commented on the benefits that this kind of image provides several advantages in terms of security, focusing on aspects such as reducing the attack surface by limiting the kind of things any user can do, even if they gain access to running containers.

This article is part of my comprehensive TIBCO Integration Platform Guide where you can find more patterns and best practices for TIBCO integration platforms.

The same applies in case any malware your image can have will have limited the possible actions they can do without any write access to most of the container.

How ReadOnlyFileSystem affects a TIBCO BWCE image?

This has a clear impact as the TIBCO BWCE image is an image that needs to write in several folders as part of the expected behavior of the application. That’s mandatory and non-dependent on the scripts you used to build your image.

As you probably know, TIBCO BWCE ships two sets of scripts to build the Docker base image: the main ones and the ones included in the folder reducedStartupTime, as you can see in the GitHub page but also inside your docker folder in the TIBCO-HOME after the installation as you can see in the picture below.

ReadOnlyRootFilesystem for TIBCO BWCE: Securing Containers with Kubernetes Best Practices

The main difference between them is where the unzip of the bwce-runtime is made. In the case of the default script, the unzip is done in the startup process of the image, and in the reducedStartupTime this is done in the building of the image itself. So, you can start thinking that the default ones need some writing access as they need to unzip the file inside the container, and that’s true.

But also, the reduced startupTime requires writing access to run the application; several activities are done regarding unzipping the EAR file, managing the properties file, and additional internal activities. So, no matter what kind of scripts you’re using, you must provide a write-access folder to do this activity.

By default, all these activities are limited to a single folder. If you keep everything by default, this is the /tmp folder, so you must provide a volume for that folder.

How to deploy a TIBCO BWCE application with the

Now, that is clear that you need a volume for the /tmp folder, and now you need to define the kind of volume that you want to use for this one. As you know, there are several kinds of volumes that you can determine depending on the requirements that you have.

In this case, the only requirement is to write access, but there is no need regarding storage and persistency, so, in that case, we can use an emptyDir mode. emptyDir content, which is erased when a pod is removed, is similar to the default behavior but allows writing permission on its content.

To show how the YAML would like, we will use the default one that we have available in the documentation here:

apiVersion: v1
kind: Pod
metadata:
  name: bookstore-demo
  labels:
    app: bookstore-demo
spec:
  containers:
  - name: bookstore-demo
    image: bookstore-demo:2.4.4
    imagePullPolicy: Never
    envFrom:
    - configMapRef:
      name: name 

So, we will change that to include the volume, as you can see here:

apiVersion: v1
kind: Pod
metadata:
  name: bookstore-demo
  labels:
    app: bookstore-demo
spec:
  containers:
  - name: bookstore-demo
    image: bookstore-demo:2.4.4
    imagePullPolicy: Never
	securityContext:
		readOnlyRootFilesystem: true
    envFrom:
    - configMapRef:
      name: name
    volumeMounts:
    - name: tmp
      mountPath: /tmp
  volumes:
  - name: tmp
    emptyDir: {}

The changes are the following:

  • Include the volumes section with a single volume definition with the name of tmp with an emptyDirdefinition.
  • Include a volumeMountssection for the tmpvolume that is mounted in the /tmp path to allow to write on that specific path to enable also the unzip of the bwce-runtime as well as all the additional activities that are required.
  • To trigger this behavior, include the readOnlyRootFilesystem flag in the securityContext section.

Conclusion

Incorporating a ReadOnlyFileSystem approach into your TIBCO BWCE images is a proactive strategy to fortify your application’s security posture. By curbing unnecessary write access and minimizing the potential avenues for unauthorized actions, you’re taking a vital step towards safeguarding your containerized environment.

This guide has unveiled the critical aspects of implementing such a security-enhancing measure, walking you through the process with clear instructions and practical examples. With a focus on reducing attack vectors and bolstering isolation, you can confidently deploy your TIBCO BWCE applications, knowing that you’ve fortified their runtime environment against potential threats.

ReadOnlyRootFilesystem Explained: Strengthening Container Security in Kubernetes

ReadOnlyRootFilesystem Explained: Strengthening Container Security in Kubernetes

Introduction

One such important security feature is the use of ReadOnlyRootFilesystem, a powerful tool that can significantly enhance the security posture of your containers.

In the rapidly evolving software development and deployment landscape, containers have emerged as a revolutionary technology. Offering portability, efficiency, and scalability, containers have become the go-to solution for packaging and delivering applications. However, with these benefits come specific security challenges that must be addressed to ensure the integrity of your containerized applications.

A ReadOnlyRootFilesystem is precisely what it sounds like a filesystem that can only be read from, not written to. In containerization, the contents of a container’s filesystem are locked in a read-only state, preventing any modifications or alterations during runtime.

 Advantages of Using ReadOnlyRootFilesystem

  • Reduced Attack Surface: One of the fundamental principles of cybersecurity is reducing the attack surface – the potential points of entry for malicious actors. Enforcing a ReadOnlyRootFilesystem eliminates the possibility of an attacker gaining write access to your container. This simple yet effective measure significantly limits their ability to inject malicious code, tamper with critical files, or install malware.
  • Immutable Infrastructure: Immutable infrastructure is a concept where components are never changed once deployed. This approach ensures consistency and repeatability, as any changes are made by deploying a new instance rather than modifying an existing one. By applying a ReadOnlyRootFilesystem, you’re essentially embracing the principles of immutable infrastructure within your containers, making them more resistant to unauthorized modifications.
  • Malware Mitigation: Malware often relies on gaining written access to a system to carry out its malicious activities. By employing a ReadOnlyRootFilesystem, you erect a significant barrier against malware attempting to establish persistence or exfiltrate sensitive data. Even if an attacker manages to compromise a container, their ability to install and execute malicious code is severely restricted.
  • Enhanced Forensics and Auditing: In the unfortunate event of a security breach, having a ReadOnlyRootFilesystem in place can assist in forensic analysis. Since the filesystem remains unaltered, investigators can more accurately trace the attack vector, determine the extent of the breach, and identify the vulnerable entry points.

Implementation Considerations

Implementing a ReadOnlyRootFilesystem in your containerized applications requires a deliberate approach:

  • Image Design: Build your container images with the ReadOnlyRootFilesystem concept in mind. Make sure to separate read-only and writable areas of the filesystem. This might involve creating volumes for writable data or using environment variables to customize runtime behavior.
  • Runtime Configuration: Containers often require write access for temporary files, logs, or other runtime necessities. Carefully design your application to use designated directories or volumes for these purposes while keeping the critical components read-only.
  • Testing and Validation: Thoroughly test your containerized application with the ReadOnlyRootFilesystem configuration to ensure it functions as intended. Pay attention to any runtime errors, permission issues, or unexpected behavior that may arise.

How to Define a Pod to be ReadOnlyRootFilesystem?

To define a Pod as “ReadOnlyRootFilesystem,” this is one of the flags that belong to the securityContext section of the pod, as you can see in the sample below:

apiVersion: v1
kind: Pod
metadata:
  name: <Pod name>
spec:
  containers:
  - name: <container name>
    image: <image>
    securityContext:
      readOnlyRootFilesystem: true

Conclusion

As the adoption of containers continues to surge, so does the importance of robust security measures. Incorporating a ReadOnlyRootFilesystem into your container strategy is a proactive step towards safeguarding your applications and data. By reducing the attack surface, fortifying against malware, and enabling better forensics, you’re enhancing the overall security posture of your containerized environment.

As you embrace immutable infrastructure within your containers, you’ll be better prepared to face the ever-evolving landscape of cybersecurity threats. Remember, when it comes to container security, a ReadOnlyRootFilesystem can be the shield that protects your digital assets from potential harm.

📚 Want to dive deeper into Kubernetes? This article is part of our comprehensive Kubernetes Architecture Patterns guide, where you’ll find all fundamental and advanced concepts explained step by step.